
Semantic Web Service Automation
with Lightweight Annotations?

Jacek Kopecký, Tomas Vitvar, and Dieter Fensel

Semantic Technology Institute (STI Innsbruck)
Innsbruck, Austria

〈firstname.lastname〉@sti2.at

Abstract. Web services, both RESTful and WSDL-based, are an increasingly
important part of the Web. With the application of semantic technologies, we
can achieve automation of the use of those services. In this paper, we present
WSMO-Lite and MicroWSMO, two related lightweight approaches to seman-
tic Web service description, evolved from the WSMO framework. WSMO-Lite
uses SAWSDL to annotate WSDL-based services, whereas MicroWSMO uses
the hRESTS microformat to annotate RESTful APIs and services. Both frame-
works share an ontology for service semantics together with most of automation
algorithms.

1 Introduction

The Semantic Web is not only an extension of the current Web with semantic descrip-
tions of data; it also needs to integrate services that can be used automatically by the
computer on behalf of its user [3]. There are currently two major, largely complemen-
tary, ways to offer automated services on the Web: 1) the so-called “Web Services”
specification stack, the keystone of Service Oriented Architectures (SOAs), based on
SOAP and WSDL, and 2) machine-oriented Web applications and APIs, also called
RESTful Web services, that conform to the REST architectural style [4] that underlies
the architecture of the World Wide Web.

Semantics-based automation, the main goal of the Semantic Web, is supported by
machine-readable formal semantic descriptions of both data and services. It has been
researched under the name Semantic Web Services (SWS), and the existing efforts, such
as WSMO [13] and OWL-S [15], focus mostly on WSDL and SOAP services. These
efforts define complete frameworks for describing the semantics of services, while as-
suming that a service engineer first models the semantics (usually as ontologies, func-
tional, nonfunctional, and behavioral descriptions) before grounding them in service
invocation and communication technologies (e.g. WSDL and SOAP).

This approach, however, does not fit well with industrial developments of SOA
technology, such as WSDL and REST, where thousands of services are already available
within and outside enterprises (i.e., on the Web). In other words, it is hard to use the
SWS frameworks in a bottom-up fashion, that is, for building increments on top of

? This work is funded by the EU research project SOA4All, http://soa4all.eu/



existing service descriptions, gradually enhancing SOA capabilities with intelligent and
automated integration.

Further, the current SWS frameworks do not support RESTful Web services, which
have only recently started to be widely recognized as an approach viable for many
distributed computing systems. RESTful Web services, also known as Web APIs, are
the substance of so-called “mashups” (lightweight compositions of Web applications),
an increasingly popular phenomenon.

In this paper, we present a unified lightweight approach for semantic description of
both RESTful and WSDL-based services, which consists of a simple ontology that mod-
els Web services and their semantics, and two annotation mechanisms, one for WSDL
and one for RESTful service descriptions, that apply this ontology to the respective Web
service technologies.

WSMO-Lite is the annotation mechanism for WSDL-based services. It uses SA-
WSDL [11] to attach semantic concepts to WSDL and XML Schema components that
describe various aspects of the service, and then it maps the structure of WSDL into the
common service model from our ontology.

MicroWSMO, on the other hand, is an annotation mechanism for HTML descrip-
tions of RESTful Web services. It extends the microformat hRESTS [8] that provides
a basic machine-readable structure of service descriptions in unstructured HTML doc-
umentation. There are several alternatives to hRESTS for machine-readable description
of Web APIs, e.g. the Web Application Description Language (WADL, [6]) and even
WSDL 2.0 [17]. These are clearly-structured, detailed and extensible formats, but prob-
ably due to their perceived complexity, they do not seem to be gaining traction with API
providers; service descriptions remain mostly in unstructured text; that is why we need
a microformat like hRESTS.

The use of lightweight annotation mechanisms such as SAWSDL and hRESTS
makes it possible to add semantics to service and API descriptions incrementally, with-
out the need to adopt a complete framework such as OWL-S or WSMO. In this paper,
we also show how the extent of semantic annotations is determined by the requirements
on automation, i.e., by the tasks that must be automated. Currently, authoring semantic
descriptons is a manual process; editing tools or (semi-)automated knowledge acquisi-
tion techniques may provide support for this crucial first step.

The content of this paper is structured as follows: in Section 2, we present the tasks
whose automation is the subject of SWS research, and we list the kinds of service
semantics that need to be captured in order to support such automation. In Section 3 we
define the ontology for the service model and the different kinds of service semantics;
followed by sections 4 and 5 where we show the mechanisms for semantic annotation
of concrete service descriptions. In Section 6, we sketch algorithms that implement
the various automation tasks. Finally, in Section 7, we discuss some related work, and
Section 8 concludes the paper.

2 Semantic Web Services Automation

SWS automation is implemented in a so-called semantic execution environment (SEE,
for instance WSMX [7]). A user can submit a concrete goal to the SEE, which then



published
descriptions

FilteringOffer discoveryService discovery
hotels in Rome min 3−star rating

Roma hotels (R)
Marriott (M) R: Central 3* $120

M: Outskirts 4* $250

R: Central 2* $70

lis
t s

er
vi

ce
s

Registry

M: Outskirts 4* $250
R: Central 3* $120

Ranking, selection
prefer central location, price

R: Central 3* $120

Invocation
reserve room

SEE

availability, rates

Web Services

User goal
"Rome hotel
 August 4−9"

what rooms for 2 do you have on aug 4−9?
room for 2, aug 4−9

N
ew

 Y
or

k
ho

te
lsho

te
ls

M
ar

rio
tt

ho
te

ls
R

om
a

Lu
fth

an
sa

ai
rli

ne

Fig. 1. Semantic Execution Environment (SEE) automation tasks

accomplishes it by finding and using the appropriate available Web services. SWS re-
search focuses mainly on how the SEE “finds the appropriate Web service(s)”, as illus-
trated in Figure 1 with the first four SEE tasks.

In the figure, the user wants to arrange a June vacation in Rome. There are four
services with published descriptions: the airline Lufthansa, and hotel reservation ser-
vices for New York, Rome, and one for the Marriott chain worldwide. The SEE first
discovers services that may have hotels in Rome, discarding Lufthansa which does not
provide hotels, and the New York service which does not cover Rome. Then the SEE
discovers offers by interaction with the discovered services. The available offers are a
4* Marriott at the outskirts of Rome (judged by the client from the address of the hotel),
and one 2* and one 3* hotel in the city center. Then the SEE filters the offers depending
on the user’s constraints and requirements (minimum 3-star rating), ranks them accord-
ing to the user’s preferences (central location, then price) and selects one offer, in the
end invoking the respective service. Note that an actual implementation of the client
may execute the tasks in different orders or even interleave them; e.g., discovery can be
combined with filtering. This can be seen as optimization, not affecting the end result.

While our example comes from e-commerce, the process of discovery, filtering,
ranking and invocation applies in general for any SWS system. In cases when the se-
mantic description of a service is not sufficient for the SEE to determine whether a
service will satisfy the user’s goal, discovery is split into service discovery, which finds
services that can potentially fulfill the goal, and offer discovery, which interacts with
the discovered services and finds out about concrete offers.

SWS automation is supported by machine-processable semantic descriptions that
capture the important aspects of the meaning of service operations and messages. Web
services can be described in terms of the following general types of service semantics:

– Information model defines the semantics of input, output and fault messages.
– Functional semantics defines service functionality, that is, what a service can offer

to its clients when it is invoked.
– Nonfunctional semantics defines any incidental details specific to the implementa-

tion or running environment of a service, such as its price or quality of service.
– Behavioral semantics specifies the protocol (ordering of operations) that a client

needs to follow when consuming a service’s functionality.

The different automation tasks have varying requirements on the extent of semantic
descriptions necessary for automation. Table 1 shows what descriptions (Functional,



Service Task F N B I
Service discovery •
Offer discovery • •
Filtering, ranking and selection ◦ • ◦ ◦
Operation invocation •
Service invocation •

Table 1. Service usage tasks and the necessary types of semantics

Nonfunctional, Behavioral and Information model) are required (•) or useful but op-
tional (◦) for the various tasks. In the following list, we go through the service usage
tasks and explain what semantic annotations are necessary.

– Service discovery finds services that can functionally satisfy a given goal. There-
fore, it requires functional semantics. Note that this is an intentionally narrow view
of service discovery, which helps us distinguish it from the other tasks.

– Offer discovery communicates with a discovered service and retrieves information
about any available offers. Offer discovery deals with the data, therefore it requires
information semantics; and it needs to invoke the service’s operations in the appro-
priate sequence, therefore it needs behavioral semantics. Offer discovery incorpo-
rates the operation invocation task described below.

– Filtering, ranking and selection, based on user constraints and preferences, can use
any available information. Most of the common ranking parameters fall into the
category of nonfunctional semantics, which is therefore marked as required.

– Operation invocation exchanges messages with the service, therefore it needs in-
formation semantics to handle the message data.

– Service invocation attempts to execute the selected service to achieve the given
goal; therefore it needs behavioral semantics in order to sequence the necessary
operation invocations appropriately. Naturally, service invocation also incorporates
operation invocation.

– Mediation is involved on any kind of semantics whenever the client encounters any
mismatches and heterogeneities.

We can see that in order to be able to automate all the mentioned tasks, which is
the intended application functionality of our service ontology, all four kinds of service
semantics are required, but if only a subset of the tasks should be automated (e.g. service
discovery and ranking, without offer discovery or automatic invocation), some of the
semantics can be left unspecified.

3 Service Semantics Ontology

Figure 2 presents our simple service semantics ontology, serialized in Notation 3.1 The
ontology consists of 3 main blocks: a service model that unifies our view of WSDL-
based and RESTful Web services, SAWSDL annotation properties for attaching se-
mantics, and finally classes for representing those semantics.

1 http://www.w3.org/DesignIssues/Notation3.html



� �
1 # namespace declarations (this line is a comment)
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
4 @prefix owl: <http://www.w3.org/2002/07/owl#> .
5 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
6 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
7
8 # service model classes and properties
9 wsl:Service rdf:type rdfs:Class .

10 wsl:hasOperation rdf:type rdf:Property ; rdfs:domain wsl:Service ; rdfs:range wsl:Operation .
11 wsl:Operation rdf:type rdfs:Class .
12 wsl:hasInputMessage rdf:type rdf:Property ; rdfs:domain wsl:Operation ; rdfs:range wsl:Message .
13 wsl:hasOutputMessage rdf:type rdf:Property ; rdfs:domain wsl:Operation ; rdfs:range wsl:Message .
14 wsl:hasInputFault rdf:type rdf:Property ; rdfs:domain wsl:Operation ; rdfs:range wsl:Message .
15 wsl:hasOutputFault rdf:type rdf:Property ; rdfs:domain wsl:Operation ; rdfs:range wsl:Message .
16 wsl:Message rdf:type rdfs:Class .
17
18 # SAWSDL properties (repeated here for completeness)
19 sawsdl:modelReference rdf:type rdf:Property .
20 sawsdl:liftingSchemaMapping rdf:type rdf:Property .
21 sawsdl:loweringSchemaMapping rdf:type rdf:Property .
22
23 # classes for expressing service semantics
24 wsl:Ontology rdf:type rdfs:Class ; rdfs:subClassOf owl:Ontology .
25 wsl:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class .
26 wsl:NonfunctionalParameter rdf:type rdfs:Class .
27 wsl:Precondition rdf:type rdfs:Class .
28 wsl:Effect rdf:type rdfs:Class .� �

Fig. 2. Service Ontology, captured in Notation 3

The first block, the service model, is also illustrated in Figure 3. It is very similar to
the model of WSDL, but it also applies to RESTful Web services (as we show in [8]).
Instances of this ontology are not expected to be authored directly; instead, the under-
lying technical descriptions (WSDL, hRESTS) are parsed in terms of this ontology for
processing in a SEE.

The service model is rooted in the class Service. In contrast to WSDL, our service
model does not separate the service from its interface, as we do not need such separation
to support SWS automation. A service is a collection of operations (class Operation).
Operations may have input and output messages, plus possible fault messages (all in
the class Message). Input messages (and faults2) are those that are sent by a client to a
service, and output messages (and faults) are those sent from the service to the client.

Figure 3 also shows the semantic annotations: a service can be annotated with its
functional and nonfunctional semantics, the behavioral semantics is represented on the
operations, and the messages are connected to the information model. To link the con-
cepts of the service model with the concrete description of the functional, nonfunc-
tional, behavioral and information semantics, we adopt the standard SAWSDL proper-
ties modelReference, liftingSchemaMapping and loweringSchemaMapping, shortly de-
scribed below.

A model reference can be used on any component in the service model to point
to the semantics of that component. In particular, a model reference on a service can
point to a description of the service’s functional and nonfunctional semantics; a model
reference on an operation points to the operation’s part of the behavioral semantics de-

2 Input faults are possible in some WSDL 2.0 message exchange patterns.



Web Service

.

.

.

Operation 1

Operation 2

Operation N

location

F N B

output

input

output

input

output

input

I

Fig. 3. Web service description model with attached semantics

scription; and a model reference on a message points to the message’s counterpart(s)
in the service’s information model. A single component can have multiple model ref-
erence values, which all apply together; for example, a service can have a number of
nonfunctional properties together with a pointer to its functionality description.

The lifting and lowering schema mapping properties are used to associate messages
with the appropriate transformations between the underlying technical format such as
XML and a semantic knowledge representation format such as RDF. The value of either
property is a URIs of a document that describes the lifting or lowering transformation.

Finally, the four types of service semantics are represented in our service ontology
as described in the following list. All the terms are formalized in [16].

– Information semantics are represented using domain ontologies.
– Functional semantics are represented as capabilities and/or functionality classifica-

tions. A capability defines logical expressions for preconditions which must hold
in a state before the client can invoke the service, and effects which hold in a state
after the service invocation. Functionality classifications define the service func-
tionality using some classification ontology (i.e., a hierarchy of categories, such as
the ecl@ss taxonomy3), and the class FunctionalClassificationRoot marks a class
that is a root of a classification, which also includes all the RDFS subclasses of the
root class.

– Nonfunctional semantics are represented using some ontology, semantically captur-
ing a policy or other nonfunctional properties. The class NonfunctionalParameter
marks a concrete piece of nonfunctional semantics.

– Behavioral semantics are represented by annotating the service operations with
functional descriptions, i.e., with capabilities and/or functionality classifications.
In Section 6, we briefly describe how the functional annotations of operations serve
for ordering of operation invocations.

4 WSMO-Lite: Annotating WSDL Services

Initially, the service ontology presented in the preceding section was developed as part
of WSMO-Lite, and applied directly to the WSDL model. However, to incorporate

3 eCl@ss Standardized Material and Service Classification, eclass-online.com



� �
1 <wsdl:description>
2 <wsdl:types><xs:schema>
3 ...
4 <xs:element name=”NetworkConnection” type=”NetworkConnectionType”
5 sawsdl:modelReference=”http://example.org/onto#NetworkConnection”
6 sawsdl:loweringSchemaMapping=”http://example.org/NetCn.xslt”/>
7 ...
8 </xs:schema></wsdl:types>
9 ...

10 <wsdl:interface name=”NetworkSubscription”
11 sawsdl:modelReference=”http://example.org/onto#VideoSubscriptionService” >
12 <wsdl:operation name=”SubscribeVideoOnDemand”
13 sawsdl:modelReference=”http://example.org/onto#VideoOnDemandSubscriptionPrecondition
14 http://example.org/onto#VideoOnDemandSubscriptionEffect”>
15 ...
16 </wsdl:interface>
17 ...
18 <wsdl:service name=”ExampleCommLtd”
19 interface=”NetworkSubscription”
20 sawsdl:modelReference=”http://example.org/onto#VideoOnDemandPrice”>
21 <wsdl:endpoint name=”public”
22 binding=”SOAPBinding”
23 address=”http://example.org/comm.ltd/subscription” />
24 </wsdl:service>
25 </wsdl:description>� �

Fig. 4. Various WSDL components with WSMO-Lite annotations

RESTful services, we have added the simplified service model and now WSMO-Lite
comprises a set of recommendations on how to annotate WSDL with the four kinds of
semantics, along with a mapping from the annotated WSDL structure to our simpler
service model, which is then the input to most of the automation algorithms.

The listing in Figure 4 shows WSMO-Lite annotations on an example WSDL doc-
ument. WSDL distinguishes between a concrete service (line 18) and its abstract (and
reusable) interface (line 10) that defines the operations (line 12). This structure is anno-
tated using SAWSDL annotations with examples of semantics. Due to space constraints,
we refer the reader to [16] for the actual semantic definitions of these annotations; nev-
ertheless, our example can be understood even without those detailed definitions.

The following paragraphs describe how the various types of semantics are attached
in the WSDL structure:

Functional semantics can be attached as a model reference either on the WSDL
service construct, concretely for the given service, or on the WSDL interface construct
(line 11), in which case the functional semantics apply to any service that implements
the given interface. Nonfunctional semantics, by definition specific to a given service,
are attached as model references directly to the WSDL service component (line 20).

Information semantics are expressed in two ways. First, pointers to the semantic
counterparts of the XML data are attached as model references on XML Schema ele-
ment declarations and type definitions that are used to describe the operation messages
(line 5). Second, lifting and lowering transformations need to be attached to the appro-
priate XML schema components: input messages (going into the service) need lowering
annotations (line 6) to map the semantic client data into the XML messages, and output
messages need lifting annotations so the semantic client can interpret the response data.

Finally, behavioral semantics of a service are expressed by annotating the service’s
operations (within the WSDL interface component, lines 13 and 14) with functional



descriptions, so the client can then choose the appropriate operation to invoke at the
appropriate time during its interaction with the service.

A WSDL document with WSMO-Lite annotations can be validated for consistency
and completeness, as described in [10]. When mapping such a WSDL document into
our simplified service model, which does not represent a separate service interface, we
combine the interface annotations with the service annotations. Similarly, annotations
from the appropriate XML Schema components are then mapped to annotations of the
messages in our service model. Otherwise, the mapping of WSDL to our service model
is straightforward.

5 MicroWSMO: Annotating RESTful APIs

In the case of RESTful services and Web APIs, there is no widely accepted machine-
readable service description language. WSDL 2.0 and WADL are two proposals for
such a language, however, the vast majority of public RESTful services are described
in plain unstructured HTML documentation. Therefore, in [8] we introduced hRESTS, a
microformat for identifying the components of the service model in a machine-readable
way in otherwise unstructured HTML service descriptions.

As we also show in [8], even though the interaction model of RESTful services (fol-
lowing links in a hypermedia graph) differs from that of SOAP services (messaging),
the service model is actually the same: a service contains a number of largely indepen-
dent operations with input and output messages. hRESTS captures this structure with
HTML classes service, operation, input and output that identify the crucial parts
of a textual service description.

In RESTful services, a service is a grouping of related Web resources, each of which
provides a part of the overall service functionality. While a SOAP service has a single
location address, each operation of a RESTful service must have an address of the
concrete resource that provides this operation. Therefore, hRESTS also defines classes
for marking the resource address and the HTTP method used on that resource (the
classes address and method), which together uniquely identify a single operation.

hRESTS is an approach with wider goals than SWS automation, and it does not
contain links for semantic annotations. Consequently, MicroWSMO extends hRESTS
with SAWSDL-like annotations: the HTML class mref identifies the model reference
annotations, and the link relations lifting and lowering identify the data grounding
transformations. The concrete semantics are added analogously to how WSMO-Lite
annotates WSDL documents: functional and nonfunctional semantics are model refer-
ences on the service, behavioral semantics are captured using functional descriptions
of operations, and information model links go on the input and output messages. An
example hRESTS/MicroWSMO description can be seen in Figure 5, showing how the
microformat is embedded in HTML.

If, in the future, a service description language such as WSDL 2.0 or WADL gains
acceptance among the providers of RESTful services, we expect a straightforward ap-
plication of SAWSDL to achieve the same effect as our current use of hRESTS and
MicroWSMO.



� �
<div class=”service” id=”svc”>
<p><span class=”label”>Example Comm Ltd.</span> is a

<abbr class=”mref” title=”...#VideoSubscriptionService”>
video subscription</abbr> service.</p> ...

<div class=”operation” id=”op1”><p> ...
The operation <code class=”label”>SubscribeVideoOnDemand</code> is
invoked using the method <span class=”method”>POST</span>
at <code class=”address”>http://example.com/videoondemand/subscription</code>,
by submitting <span class=”input”> the

<code class=”mref” title=”...#NetworkConnection”>current network connection type</code> details
(<a rel=”lowering” href=”.../networkConnection.xslt”>lowering</a>).

</span>.
It returns ...

</p></div>
</div>� �

Fig. 5. Example hRESTS description

6 Automation algorithms

In this section, we complete the picture of our lightweight SWS approach by sketching
a number of algorithms for processing semantically annotated service descriptions, and
thus automating the common tasks which are currently performed largely manually by
human operators. Detailed realization of these algorithms remains as future work.

Automation is always guided by a given user goal. While we do not talk in this
paper about concrete formal representation for user goals, the various algorithms need
the goal to contain certain specific information. We describe this only abstractly, since
we view the concrete representation of user goals as an implementation detail specific
to a particular tool set.

Service Discovery: for discovery (also known as “matchmaking”) purposes, our ap-
proach provides functional service semantics of two forms: functionality classifications
and precondition/effect capabilities, with differing discovery algorithms.

With functionality classifications, a service is annotated with particular functionality
categories. We treat the service as an instance of these category classes. The user goal
will identify a concrete category of services that the user needs. A discovery mech-
anism uses subsumption reasoning among the functionality categories to identify the
services that are members of the goal category class (“direct matches”). If no such ser-
vices are found, a discovery mechanism may also identify instances of progressively
further superclasses of the goal category in the subclass hierarchy of the functionality
classification. To illustrate: if the user is looking for a VideoService, it will find services
marked as VideoSubscriptionService (presuming the intuitive subclass relationships) as
direct matches, and it may find services marked as MediaService which are potentially
also video services, even though the description does not directly advertise that.

For discovery with preconditions and effects, the user goal must specify the user’s
preconditions (requirements) and the requested effects. The discovery mechanism will
need to check, for every available service, that the user’s knowledge base fulfills the
precondition of the service and that this precondition is not in conflict with the user’s
requirements, and finally that the effect of the service fulfills the effect requested by the
user. This is achieved using satisfaction and entailment reasoning.



Discovery using functionality categorizations is likely to be coarse-grained, whereas
the detailed discovery using preconditions and effects may be complicated for the users
and resource-intensive. Therefore we expect to combine the two approaches, to de-
scribe the core functionality in general classifications, and only some specific details
using logical expressions, resulting in better overall usability.

Offer Discovery: especially in e-commerce scenarios, service discovery as described
above cannot guarantee that the service will actually have the particular product that the
user requests. For instance, if the user wants to buy a certain book, service discovery
will return a number of online bookstores, but it cannot tell whether the book is available
at these bookstores. Offer discovery is the process of negotiating with the service about
the concrete offers pertinent to the user’s goal.

An offer discovery algorithm uses the behavioral and information model annota-
tions of a Web service to select and invoke the appropriate offer inquiry operations.
In Web architecture [2], there is a concept of safe interaction, mostly applied to in-
formation retrieval. In particular, HTTP GET operations are supposed to be safe, and
WSDL 2.0 contains a flag for safe SOAP operations. As detailed in [9], we implement
offer discovery through the use of AI (Artificial Intelligence) planning over the inputs
and outputs of the safe operations of a given service.

Filtering, Ranking, Selection: these tasks mostly deal with the nonfunctional param-
eters of a service. The user goal (or general user settings) specifies constraints and
preferences (also known as hard and soft requirements) on a number of different as-
pects of the discovered services and offers. For instance, service price, availability and
reliability are typical parameters for services, and delivery options and warranty times
can accompany the price as further nonfunctional parameters of service offers.

Filtering is implemented simply by comparing user constraints with the parameter
values, resulting in a binary (yes/no) decision. Ranking, however, is a multidimensional
optimization problem, and there are many approaches to dealing with it, including ag-
gregation of all the dimensions through weighted preferences into a single metric by
which the services are ordered, or finding locally-optimal services using techniques
such as Skyline Queries [14].

Selection is then the task of selecting only one of the ranked services. With a total
order, the first service can be selected automatically, but due to the complexity of com-
paring the different nonfunctional properties (for instance, is a longer warranty worth
the slightly higher price?), often the ordered list of services will be presented to the user
for manual selection.

Invocation: service invocation involves the execution of the various operations of the
selected service in the proper order so that the user goal is finally achieved.

To invoke a single operation, the client uses the information model annotations plus
the technical details from the WSDL or hRESTS description to form the appropriate
request message, transmit it over the network to the Web service, and to understand
the response. If multiple operations must be invoked, the client can use AI planning
techniques with functional semantics, and on RESTful services, the hypermedia graph
can guide the client in its invocations, as the client gets links to further operations in the
response to the last operation invoked.



7 Related Work

Our work is most directly related to SWS frameworks such as WSMO and OWL-S. In
fact, we started working on WSMO-Lite as a reaction to the existence of SAWSDL,
rethinking the WSMO conceptual model from the point of view of WSDL service de-
scriptions. In comparison with WSMO in particular, our service semantics ontology,
shared by both WSMO-Lite and MicroWSMO, drops the support for expressing service
orchestration (the inner workings of the service in terms of other involved services),
and we also do not describe user goals and mediators, considering these concepts out of
scope of semantic service description. On the other hand, our service semantics ontol-
ogy adds the possibility of specifying service functionality using a classification, which
is a very straightforward and simple approach not directly supported in WSMO.

One missing piece in the various SWS technologies (incl. OWL-S, WSMO, and our
approach) is data grounding, a way of specifying mappings (both lifting and lowering)
between the higher-level semantic data used by the client software and the low-level
messages required by the Web services. The suitability of different data grounding
technologies depends on the kind of data that is exchanged by the service, therefore
this area is usually left as an extension point. Various technologies can be plugged in to
provide the grounding functionality: XSLT [18] as the basic standard XML transforma-
tion language; XSPARQL [1] as a new research proposal that combines the power of
SPARQL for RDF manipulation with XQuery for handling XML data, simplifying the
actual transformations; or approaches such as [12] by Necasky and Pokorny, based on
a hub-and-spoke mapping approach with a central conceptual model.

Another area of related work is around the automation algorithms. While we sketch
a number of algorithms in Section 6, it is not the purpose of this paper to provide
deep details of these algorithms, or to provide a wide survey of existing approaches.
We plan to perform implementation and evaluation of a number of these algorithms,
supporting WSMO-Lite and MicroWSMO, in the scope of the EU research project
SOA4All, whose use cases range from e-commerce to enterprise service delivery.

8 Conclusions

In this paper, we have described WSMO-Lite and MicroWSMO, our lightweight se-
mantic Web service description approaches that build on SAWSDL and hRESTS to add
semantics to Web services of both main kinds: SOAP/WSDL services and RESTful
Web APIs. Our approach focuses on incremental and modular introduction of semantics
into service descriptions, and thus complements the more expressive and well-known
frameworks such as WSMO.

While lightweight, our semantic Web service description approach has sufficient
expressivity to cover most of the known deployments of the larger frameworks. For
instance, with the exception of service orchestration, WSMO-Lite could be used instead
of WSMO in [5], in particular enabling better modularization of the extent of semantic
annotations.



References

1. W. Akhtar, J. Kopecký, T. Krennwallner, and A. Polleres. XSPARQL: Traveling between
the XML and RDF worlds – and avoiding the XSLT pilgrimage. In S. Bechhofer and
M. Koubarakis, editors, The Semantic Web: Research and Applications, 5th European Se-
mantic Web Conference, ESWC 2008, volume 5021 of Lecture Notes in Computer Science,
LNCS, pages 674–689, Tenerife, Spain, June 2008. Springer.

2. Architecture of the World Wide Web. Recommendation, W3C, December 2004. Available
at http://www.w3.org/TR/webarch/.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

4. R. T. Fielding. Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine, 2000. Chair: Richard N. Taylor.

5. K. Furdik, J. Hreno, and T. Sabol. Conceptualisation and Semantic Annotation of eGovern-
ment Services in WSMO. In Proceedings of Znalosti 2008, Bratislava, Slovakia, 2008.

6. M. J. Hadley. Web Application Description Language (WADL). Technical report, Sun Mi-
crosystems, November 2006. Available at https://wadl.dev.java.net/.

7. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX – A Semantic Service-
Oriented Architecture. International Conference on Web Services (ICWS 2005), July 2005.

8. J. Kopecký, K. Gomadam, and T. Vitvar. hRESTS: an HTML Microformat for Describing
RESTful Web Services. In Proceedings of the 2008 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI-08), Sydney, Australia, 2008.

9. J. Kopecký and E. Simperl. Semantic Web Service Offer Discovery For E-commerce. In
Proceedings of the 10th International Conference on Electronic Commerce 2008, Innsbruck,
Austria, August 19-22, 2008, 2008.

10. J. Kopecký and T. Vitvar. WSMO-Lite: Lowering the Semantic Web Services Barrier with
Modular and Light-Weight Annotations. In Proceedings of the 2008 IEEE International
Conference on Semantic Computing, pages 238–244, Santa Clara, USA, 2008.

11. J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL: Semantic Annotations for
WSDL and XML Schema. IEEE Internet Computing, 11(6):60–67, 2007.

12. M. Necasky and J. Pokorny. Designing semantic web services using conceptual model. In
Proceedings of the 2008 ACM Symposium on Applied Computing, Fortaleza, Ceara, Brazil,
2008.

13. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied Ontology, 1(1):77–106,
2005.

14. D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis. Serving the Sky: Discovering and
Selecting Semantic Web Services through Dynamic Skyline Queries. In Proceedings of the
2008 IEEE International Conference on Semantic Computing, Santa Clara, USA, 2008.

15. The OWL Services Coalition. OWL-S 1.1 Release. Available at http://www.daml.org/
services/owl-s/1.1/, November 2004.

16. T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel. WSMO-Lite Annotations for Web Services.
In The Semantic Web: Research and Applications, 5th European Semantic Web Conference,
ESWC 2008, pages 674–689, Tenerife, Spain, 2008. Springer.

17. Web Services Description Language (WSDL) Version 2.0. Recommendation, W3C, June
2007. Available at http://www.w3.org/TR/wsdl20/.

18. XSL Transformations. Recommendation, W3C, November 1999. Available at http://www.
w3.org/TR/xslt.


